

## REVIEW

# Enteric P2X receptors as potential targets for drug treatment of the irritable bowel syndrome

\*<sup>1</sup>James J. Galligan

<sup>1</sup>Department of Pharmacology and Toxicology and the Neuroscience Program, Life Science B440, Michigan State University, East Lansing, MI 48824, U.S.A.

The irritable bowel syndrome (IBS) is a gastrointestinal motility disorder affecting millions of patients. IBS symptoms include diarrhea, constipation and pain. The etiology of IBS is due partly to changes in the function of nerves supplying the gastrointestinal tract, immune system activation and to psychological factors. P2X receptors are multimeric ATP-gated cation channels expressed by neuronal and non-neuronal cells. Sensory nerve endings in the gastrointestinal tract express P2X receptors. ATP released from gastrointestinal cells activates P2X receptors on sensory nerve endings to stimulate motor reflexes and to transmit nociceptive signals. Antagonists acting at P2X receptors on sensory nerves could attenuate abdominal pain in IBS patients. Primary afferent neurons intrinsic to the gut, and enteric motor- and interneurons express P2X receptors. These neurons participate in motor reflexes. Agonists acting at enteric P2X receptors may enhance gastrointestinal propulsion and secretion, and these drugs could be useful for treating constipation-predominant IBS. Antagonists acting at enteric P2X receptors would decrease propulsion and secretion and they might be useful for treating diarrhea-predominant IBS. Current knowledge of P2X receptor distribution and function in the gut of laboratory animals provides a rational basis for further exploration of the therapeutic potential for drugs acting at P2X receptors in IBS patients. However, more information about P2X receptor distribution and function in the human gastrointestinal tract is needed. Data on the distribution and function of P2X receptors on gastrointestinal immune cells would also provide insights into the therapeutic potential of P2X receptor agents in IBS.

*British Journal of Pharmacology* (2004) **141**, 1294–1302. doi:10.1038/sj.bjp.0705761

**Keywords:** Enteric nervous system; ligand-gated ion channels; gastrointestinal motility; visceral hypersensitivity

**Abbreviations:** AH, afterhyperpolarization; ENS, enteric nervous system; GI, gastrointestinal; IBS, irritable bowel syndrome;  $I_K$ , intermediate-conductance calcium-activated potassium current; PPADS, pyridoxal phosphate 6-azophenyl-2', 4'-disulfonic acid

## Introduction

The irritable bowel syndrome (IBS) is a functional bowel disorder that is associated with altered gastrointestinal (GI) motility and changes in defecation. Abdominal discomfort and pain particularly during defecation are also characteristic symptoms of IBS (Drossman *et al.*, 2002). While it is uncertain if there are changes in the function of enteric nerves controlling GI motility in IBS patients, it is clear that there are changes in the function of the sensory innervation of the GI tract. Visceral hypersensitivity or lower pain thresholds for affective responses to GI distension is a common symptom in IBS patients and this is likely to contribute to the abdominal pain that occurs during defecation and contractions of the GI muscle layers (Mayer, 2000; Drossman *et al.*, 2002). Although visceral hypersensitivity has been associated with decreased pain thresholds in IBS patients, decreased thresholds for activation of sensory nerves could also contribute to GI motor hyperreflexia leading to defecation urgency and diarrhea.

The pathophysiology of IBS is complex and incompletely understood. There are disturbances in normal GI motility patterns in many but not all IBS patients (Drossman *et al.*,

2002) and, therefore, the neurohumoral mechanisms producing normal GI motility may be altered. As mentioned above, the function of sensory nerves supplying the GI tract is altered, and central nervous system mechanisms responsible for processing visceral input and pain sensations are different in IBS patients compared to control subjects (Mayer, 2000). Psychological and cognitive factors also play a prominent role in the etiology of IBS (Drossman *et al.*, 2002; Talley, 2003). Finally, interactions between the immune system and neurohumoral control of GI motility may play a role in the pathophysiology of IBS. This last conclusion is based on reports of many IBS patients who indicate that the onset of GI symptoms occurred subsequent to an acute episode of gastroenteritis (Spiller, 2003). It is feasible that immune activation in the GI tract may produce long-lasting changes in the function of neuronal and non-neuronal cells in the gut. For example, mast cell signaling molecules such as histamine and tryptase (Wood, 1992; Liu *et al.*, 2003; Reed *et al.*, 2003) as well as cytokines and other inflammatory mediators (Frieling *et al.*, 1997; Xia *et al.*, 1999; Kelles *et al.*, 2000; Liu *et al.*, 2003; Neunlist *et al.*, 2003) cause acute changes in excitability of enteric neurons. Intestinal inflammation is also associated with long-lasting changes in the expression of a

\*Author for correspondence; E-mail: galliga1@msu.edu  
Advance online publication: 29 March 2004

variety of proteins that regulate cell excitability, growth or differentiation of enteric neurons (Poli *et al.*, 2001; Sharkey & Kroese, 2001). Primary afferent neurons supplying the GI tract are also targets for the actions of inflammatory mediators and cytokines (Furness & Clerc, 2000; Holzer, 2001; Moore *et al.*, 2002; Stewart *et al.*, 2003). Inflammatory mediators can also change the function and number of glial cells in the enteric nervous system (ENS) (Bradley *et al.*, 1997; Ruhl *et al.*, 2001; Sharkey & Kroese, 2001). Inflammation-induced changes in the function of enteric and primary afferent neurons and enteric glia would all contribute to the spectrum of GI symptoms characteristic of IBS.

Given the complex pathophysiology of IBS, it is not surprising that it has been a challenge to develop drugs that effectively and safely treat the symptoms of IBS in all patients (Kamm, 2002; Talley, 2003). Another obstacle to the development of new drugs for the treatment of IBS has been the shortage of appropriate animal models of IBS against which potential medications can be screened (Mayer & Collins, 2002). In addition, IBS is not a homogenous disorder, as three broad classes of IBS patients have been defined using clinical criteria. The first group includes patients with diarrhea as the predominant symptom (diarrhea-predominant IBS). The second group of patients exhibits constipation as their predominant symptom (constipation-predominant IBS), while the third group of patients has alternating symptoms (alternating-predominant). Therefore, a single drug or drug class is unlikely to be effective in the treatment of all IBS patients (Corazziari *et al.*, 2003). Another issue relevant to drug development is that psychological and cognitive factors are prominent in IBS and there is a strong placebo response in all trials of potential IBS medications (Talley, 2003). Therefore, differences between placebo and treatment groups in efficacy outcomes are often small (Corazziari *et al.*, 2003; Kamm, 2002; Talley, 2003). Despite these challenges, there has been some success in developing drugs for treatment of the symptoms in IBS patients. Alosetron, an antagonist at 5-HT<sub>3</sub> receptors, reduces abdominal pain and stool frequency in some female, diarrhea-predominant IBS patients (reviewed by Lembo *et al.*, 2003; Mayer & Bradesi, 2003). Although, alosetron has a demonstrated therapeutic benefit in this subset of IBS patients, alosetron therapy has been associated with some occurrences of severe constipation and ischemic colitis (Lembo *et al.*, 2003; Mayer & Bradesi, 2003). These adverse events resulted in a short-term withdrawal of alosetron from the market and subsequent re-introduction with marked restrictions on its use. However, more recent data indicate that the occurrence of ischemic colitis or other adverse events in alosetron-treated IBS patients may not be greater than that in alosetron-untreated IBS patients (Miller *et al.*, 2003). Tegaserod, a 5-HT<sub>4</sub> receptor partial agonist, has been introduced recently for the treatment of female constipation-predominant IBS patients (Wagstaff *et al.*, 2003). Tegaserod increases stool frequency and reduces abdominal bloating and pain (Novick *et al.*, 2002), and up to this time no significant adverse effects have been reported to occur during tegaserod treatment.

Despite encouraging developments in drug therapies, the prevalence of IBS and heavy health-care burden posed by this disorder have led to a continued search for new classes of drugs for the treatment of IBS (Callahan, 2002, see other articles in this supplement). In the search for new drugs, two important considerations will impact on the types of drugs

likely to be effective in treating IBS. As there are changes in motility and in the function of the sensory innervation of the gut, a drug candidate would need to target both the sensory nerves involved in visceral sensation and the neurohumoral mechanisms controlling GI motility. P2X receptors for ATP are expressed by both extrinsic intestinal sensory nerves and by enteric nerves controlling GI motor reflexes (Kirkup *et al.*, 1999; Holzer, 2001; Galligan *et al.*, 2000; Kennedy *et al.*, 2003). In addition, immune cells express P2X receptors (DiVirgilio *et al.*, 2001), and agonists acting at these receptors cause immune activation and release of cytokines and other signaling molecules that can change sensory and enteric nerve function (Sharkey & Kroese, 2001; Sharkey & Mawe, 2002). Therefore, drugs acting at P2X receptors might be useful agents for the treatment of sensory and motor abnormalities in IBS. This review will discuss the role of P2X receptors on nerves supplying the GI tract in order to provide a rationale basis for the development of P2X receptor ligands for the treatment of IBS.

## The enteric nervous system

The ENS is the division of the autonomic nervous system whose nerve cell bodies and non-neuronal support cells reside entirely within the gut wall (Furness & Costa, 1987). The ENS is composed of two nerve plexuses: the myenteric plexus and submucosal plexus. The principal function of the myenteric plexus is to control GI motility, while the submucosal plexus controls the secretory and absorptive functions of the GI epithelium, local blood flow and neuroimmune function (Kunze & Furness, 1999; Cooke, 2000). Both plexuses receive synaptic inputs from the sympathetic and parasympathetic divisions of the autonomic nervous system (Lundgren, 2000; Powley, 2000). Sensory neurons whose cell bodies are in spinal sensory and nodose ganglia can also release neurotransmitters, including ATP from their distal ends onto enteric neurons (Holzer, 2001; Kirkup *et al.*, 2001). However, most synaptic input to enteric neurons comes from other enteric neurons (Kunze *et al.*, 1993; Galligan *et al.*, 2000).

There are two types of enteric neurons: 'S' neurons and 'AH' neurons (Kunze & Furness, 1999; Galligan *et al.*, 2000). Electrical stimulation of interganglionic fiber tracts in the myenteric plexus elicits fast excitatory postsynaptic potentials (fEPSPs) in many S neurons, and the fEPSP is a prominent mechanism of synaptic excitation of S neurons (Nishi & North, 1973; Hirst *et al.*, 1974). Acetylcholine and ATP are the principal fast excitatory synaptic transmitters in the ENS (Galligan *et al.*, 2000). Data from electrophysiological, anatomical and functional studies indicate that S neurons are interneurons and motor neurons (Brookes, 2001). Some AH neurons also receive fast excitatory synaptic input (Grafe *et al.*, 1979; Tamura & Wood, 1989; Liu *et al.*, 1997; Cornelissen *et al.*, 2001; Linden *et al.*, 2003), but most of these neurons only receive slow excitatory synaptic input (Kunze *et al.*, 1993; Furness *et al.*, 1998).

The action potential in AH neurons has a prominent shoulder that is due to a calcium current. The action potential is followed by a slowly developing but long-lasting (1–20 s) afterhyperpolarization (Nishi & North, 1973; Hirst *et al.*, 1974). The slow afterhyperpolarization is due to activation of a calcium-dependent potassium channel that is activated by

calcium entering the neuron during an action potential (Morita *et al.*, 1982; Hirst *et al.*, 1985). Recent work has shown that an intermediate-conductance ( $I_K$ ) calcium-dependent potassium channel mediates the action potential slow afterhyperpolarization (Vogalis *et al.*, 2002). Under resting conditions, AH neurons fire one or two action potentials as the afterhyperpolarization limits the firing rate. The function of AH neurons in the ENS is controversial, but these neurons may function as primary afferent neurons intrinsic to the gut wall (Kirchgessner & Gershon, 1988; Furness *et al.*, 1998). The issues surrounding classification of AH neurons as intrinsic primary afferent neurons have been reviewed recently (Furness *et al.*, 2004).

## P2X receptors in the ENS

### Overview of P2X receptors

There have been several recent reviews of the pharmacology and physiology of P2X receptors expressed in heterologous systems or in native tissues (Norenberg & Illes, 2000; North & Surprenant, 2000; Robertson *et al.*, 2001; North, 2002). The reader is referred to these previously published papers for detailed information about the structure, function and pharmacology of P2X receptors. A brief overview of P2X receptor structure and function is provided here.

P2X receptors are ATP-gated cation channels. There are seven P2X receptor subunits (P2X<sub>1-7</sub>) and each subunit has two membrane-spanning domains and the subunits may assemble as trimers to form functional P2X receptors (Jiang *et al.*, 2003). Functional P2X receptors can be homomeric or heteromeric, and several subunit combinations form functional P2X receptors in heterologous expression systems. P2X receptors composed of different subunits or subunit combinations have unique pharmacological and functional properties (North & Surprenant, 2000), and these properties defined in heterologous systems can be used to help identify the subunit combinations composing P2X receptors in native cells. While a number of different subunit combinations can form functional P2X receptors in heterologous systems (Torres *et al.*, 1999), the subunit combinations that are likely to co-assemble to form functional P2X receptors in native cells are more limited (North, 2002). For example, there is good evidence to indicate that P2X<sub>2</sub> and P2X<sub>3</sub> subunits co-assemble to form functional P2X<sub>2/3</sub> heteromeric receptors in a subset of dorsal root ganglion neurons (Lewis *et al.*, 1995; North, 2002; Kennedy *et al.*, 2003).

### Pharmacology of enteric P2X receptors

The pharmacological properties of enteric P2X receptors have been characterized using enteric neurons maintained in primary culture (Barajas-Lopez *et al.*, 1996; Zhou & Galligan, 1996). Pyridoxal phosphate 6-azophenyl-2',4'-disulfonic acid (PPADS) is an antagonist that blocks some P2X receptors (North & Surprenant, 2000). In most neurons, ATP causes an inward current that desensitizes by more than 80% in 7 s. ATP-induced inward currents are blocked by PPADS but are not mimicked by  $\alpha,\beta$ -methylene ATP (Zhou & Galligan, 1996).  $\alpha,\beta$ -Methylene ATP is an agonist at P2X receptors containing P2X<sub>1</sub> and P2X<sub>3</sub> subunits but it does not activate P2X<sub>2</sub> homomeric receptors (North & Surprenant, 2000); so, P2X

## Therapeutic potential of P2X receptors in IBS

receptors on myenteric neurons may be P2X<sub>2</sub> homomeric receptors. The slow desensitization of the ATP response in myenteric neurons also suggests that it is mediated by P2X receptors that contain P2X<sub>2</sub> subunits (North, 2002). It is not known, yet, if these receptors in the guinea pig small intestine are P2X<sub>2</sub> homomers or are heteromers containing other P2X receptor subunits. This issue has been addressed, in part, in studies of P2X receptors in the small intestine of wild-type mice and in P2X<sub>2</sub> subunit gene knockout mice (Ren *et al.*, 2003). In these studies, it was found that ATP but not  $\alpha,\beta$ -methylene ATP depolarized S neurons in tissues from wild-type mice. ATP or  $\alpha,\beta$ -methylene ATP did not depolarize S neurons from P2X<sub>2</sub> subunit knockout mice. These data indicate that in the mouse small intestine the P2X receptor expressed by S neurons is a P2X<sub>2</sub> homomeric receptor.

In approximately 10% of myenteric neurons maintained in primary culture, ATP elicited a rapidly developing inward current (10–90% rise time <50 ms) that desensitized in <200 ms. The rapidly desensitizing ATP response was mimicked by  $\alpha,\beta$ -methylene ATP (Zhou & Galligan, 1996). These properties are similar to those of P2X receptors containing P2X<sub>3</sub> subunits (Lewis *et al.*, 1995; North, 2002), but the subset of myenteric neurons expressing this receptor was not identified. Studies in small intestinal tissues from wild-type mice have shown that AH neurons are depolarized by ATP and  $\alpha,\beta$ -methylene ATP (Bian *et al.*, 2003). However, AH neurons in the small intestine from P2X<sub>3</sub> subunit knockout mice were depolarized by ATP but not by  $\alpha,\beta$ -methylene ATP. These data indicate that P2X receptors in AH neurons are heteromeric receptors composed of P2X<sub>3</sub> subunits and an unidentified subunit.

P2X<sub>7</sub> receptor subunits have been localized to nerve terminals and nerve cell bodies in the ENS of guinea pig ileum (Hu *et al.*, 2001). Homomeric P2X<sub>7</sub> receptors are relatively insensitive to activation by ATP ( $EC_{50} = 100 \mu M$ ), but they are activated by low concentrations ( $EC_{50} = 3 \mu M$ ) of the ATP analog 2',3'-O-(4-benzoylbenzoyl) ATP (BzATP) (North, 2002). BzATP causes inward currents in myenteric neurons maintained in primary culture but the  $EC_{50}$  value is 250  $\mu M$  (Hu *et al.*, 2001) and ATP produces larger currents than BzATP at equimolar concentrations. KN-62 blocks P2X<sub>7</sub> receptors with an  $IC_{50}$  value of 50 nM (North & Surprenant, 2000); however, in myenteric neurons, KN-62 inhibits ATP-induced currents by 25% at 3  $\mu M$ . P2X<sub>7</sub> homomeric receptors are pore-forming receptors that become permeable to large cations during prolonged activation (North, 2002). It is not known if enteric neuronal P2X<sub>7</sub> receptors expressed have this pore-forming capacity. P2X<sub>7</sub> receptors in the ENS have unique pharmacological properties that discriminate them from heterologously expressed receptors. Therefore, the P2X<sub>7</sub> subunit-containing receptors are probably not P2X<sub>7</sub> homomeric receptors. P2X<sub>7</sub> receptor subunits may combine with other P2X subunits in enteric neurons to form heteromeric receptors with unique pharmacological and functional properties.

### P2X receptors mediate fast synaptic transmission

ATP acting on P2X receptors contributes to electrically evoked fEPSPs recorded from many myenteric S neurons in the guinea pig GI tract (LePard *et al.*, 1997; Johnson *et al.*, 1999; Monroe *et al.*, 2004; Nurgali *et al.*, 2003). Therefore, drugs acting at P2X receptors on S neurons would modify synaptic excitation

of interneurons conveying synaptic information up and down the length of the gut and of motor neurons supplying the muscle layers. Modification of synaptic input to interneurons and motor neurons would be a useful mechanism of action for drug treatment of IBS. Identification of the specific subunit composition of P2X receptors mediating synaptic excitation of interneurons and motor neurons is needed prior to the development of drugs that would target these neurons.

Immunohistochemical studies of the guinea pig myenteric plexus showed that P2X<sub>2</sub> receptor subunits are expressed by nitric oxide synthase (NOS)-containing inhibitory motor neurons, descending interneurons and calbindin-containing neurons (Castelucci *et al.*, 2002). NOS-containing inhibitory motor neurons participate in descending motor reflexes. Expression of P2X<sub>2</sub> subunits by neurons with descending projections is consistent with previous functional studies in which it was shown that neurons receiving non-cholinergic fast synaptic inputs were in descending pathways (Lepard & Galligan, 1999) and that NOS-containing inhibitory motor neurons receive P2X receptor-mediated fast synaptic input (Johnson *et al.*, 1999). These data are consistent with the hypothesis that ATP acting at P2X<sub>2</sub> subunit-containing receptors contributes to synaptic excitation in descending motor pathways in the guinea pig intestine (Figure 1). This conclusion is supported by data obtained in tissues from P2X<sub>2</sub> subunit knockout mice (Ren *et al.*, 2003). Although the functional class of neurons was not identified, it was shown that all fEPSPs were blocked completely by a nicotinic cholinergic receptor antagonist in the small intestine of P2X<sub>2</sub> receptor knockout mice. Therefore, fEPSPs were mediated only by acetylcholine acting at nicotinic receptors. ATP did not depolarize the same S neurons, but these neurons did respond normally to nicotine. In tissues from P2X<sub>2</sub> wild-type mice, fEPSPs were blocked only by the combined application of a nicotinic receptor antagonist and PPADS (Ren *et al.*, 2003). Therefore, the P2X receptor expressed by myenteric S neurons in the mouse intestine is a P2X<sub>2</sub> homomeric receptor. However, studies of the guinea pig myenteric plexus showed that immunoreactivity for the P2X<sub>3</sub> subunit is expressed by NOS-containing inhibitory motor neurons (Poole *et al.*, 2002; VanNassauw *et al.*, 2002), indicating that P2X<sub>3</sub> subunits could contribute to P2X receptors mediating fEPSPs in descending pathways in the guinea pig small intestine. As discussed above, the non-cholinergic component of fEPSPs is absent in all myenteric S neurons from P2X<sub>2</sub> knockout mice, suggesting that only P2X<sub>2</sub> subunits compose the P2X receptor expressed by mouse myenteric S neurons. There may be differences between guinea pig and mouse in the subunit composition of functional P2X receptors expressed by S neurons. Alternatively, P2X<sub>3</sub> subunits in guinea pig S neurons may not contribute to the P2X receptor mediating fEPSPs in guinea pig ileum myenteric neurons. For example, the P2X<sub>3</sub> subunits might not be assembled into functional P2X receptors or P2X<sub>3</sub> subunits might be localized to extrasynaptic sites that are not accessible to synaptically released ATP.

When discussing potential targets for drugs to be used in the treatment of IBS, receptors on colonic myenteric neurons are an important site of action for these proposed agents. Electrophysiological have shown that 20–50% of myenteric neurons in the guinea pig colon receive fast synaptic input that is mediated partly by ATP acting at P2X receptors (LePard *et al.*, 1997; Nurgali *et al.*, 2003). The combined electro-

physiological and morphological approach used by Nurgali *et al.* (2003) showed that there was no specific association of P2X-mediated fEPSPs with a functional class of S neuron. It appears then that P2X-mediated fEPSPs contribute to synaptic transmission in ascending and descending pathways in the guinea pig colon (Nurgali *et al.*, 2003). This differs from the selective expression of P2X-mediated fEPSPs in descending projections in the guinea pig small intestine (see above).

#### Functional studies of P2X receptors on AH neurons

Myenteric and submucosal AH neurons with Dogiel type II cell morphology have processes that terminate in the mucosa of the intestine (Kirchgessner & Gershon, 1988; Song *et al.*, 1994; 1998; Hens *et al.*, 2000). As AH neurons may function as intestinal primary afferent neurons (Furness *et al.*, 1998; 2004), substances released from epithelial cells or from enterochromaffin (EC) cells could act at receptors expressed by the nerve terminals of AH neurons in the mucosal layer (Bertrand & Bornstein, 2002). AH neurons also have processes that ramify in enteric ganglia, and this provides the anatomical substrate for activation of motor reflexes in response to mucosal stimulation (Kirchgessner & Gershon, 1988; Kunze *et al.*, 1993; Kunze & Furness, 1999; Furness *et al.*, 2004).

Most AH neurons contain the calcium-binding protein calbindin D28K (Furness *et al.*, 1998), and these cell also express immunoreactivity for P2X<sub>2</sub> receptor subunits (Castelucci *et al.*, 2002; VanNassauw *et al.*, 2002). P2X<sub>2</sub> subunits expressed by AH neurons might mediate excitatory responses caused by ATP released by mucosal epithelial cells. Studies carried out in preparations of the guinea pig small intestine with the mucosa intact showed that application of ATP to mucosal villi caused antidromic action potentials that could be recorded in the cell body of myenteric AH neurons (Bertrand & Bornstein, 2002). ATP-induced responses were inhibited by a high concentration (60  $\mu$ M) of PPADS, but were not inhibited by suramin nor were they mimicked by  $\alpha,\beta$ -methylene ATP. These data suggest that ATP released in the mucosa by mechanical or chemical stimuli can activate AH neurons *via* an action at an unidentified P2X on the nerve cell body or nerve terminals. P2X<sub>4</sub> homomeric receptors are not activated by  $\alpha,\beta$ -methylene ATP and are relatively insensitive to PPADS or suramin antagonism (North, 2002). Therefore, the P2X receptor expressed by guinea pig myenteric AH neurons could be a P2X<sub>4</sub> subunit-containing receptor. Immunohistochemical studies have shown that guinea pig AH type neurons express immunoreactivity for P2X<sub>2</sub> subunits, so the P2X receptors in these cells could be a P2X<sub>2/4</sub> heteromeric receptor. However, immunoprecipitation studies of epitope-tagged P2X receptor subunits expressed in HEK293 cells revealed that P2X<sub>2</sub> and P2X<sub>4</sub> subunits do not co-assemble to form a heteromeric complex (Torres *et al.*, 1999). The subunit composition of functional P2X receptors in guinea pig AH neurons remains to be established (Figure 2).

$\alpha,\beta$ -Methylene ATP and ATP depolarize myenteric AH neurons in the mouse intestine. However, ATP but not  $\alpha,\beta$ -methylene ATP depolarizes AH neurons in preparations from P2X<sub>3</sub> subunit knockout mice (Bian *et al.*, 2003). Therefore, P2X<sub>3</sub> subunits contribute to the P2X receptors in murine AH neurons. As AH neurons in the small intestine of P2X<sub>3</sub> subunit knockout mice retain their sensitivity to ATP, other subunits must contribute to the receptor expressed by AH neurons. This

is a property that AH neurons share with some primary afferent neurons that express P2X<sub>2/3</sub> heteromeric receptors in dorsal root ganglia (Lewis *et al.*, 1995; Kennedy *et al.*, 2003). However, it is important to note that immunohistochemical studies in the guinea pig myenteric plexus have shown that P2X<sub>3</sub> subunits are not found in calbindin-containing AH-type neurons. There may be species differences in the expression of P2X receptor subunits by functional subsets of enteric neurons.

#### *P2X receptors on submucosal plexus neurons*

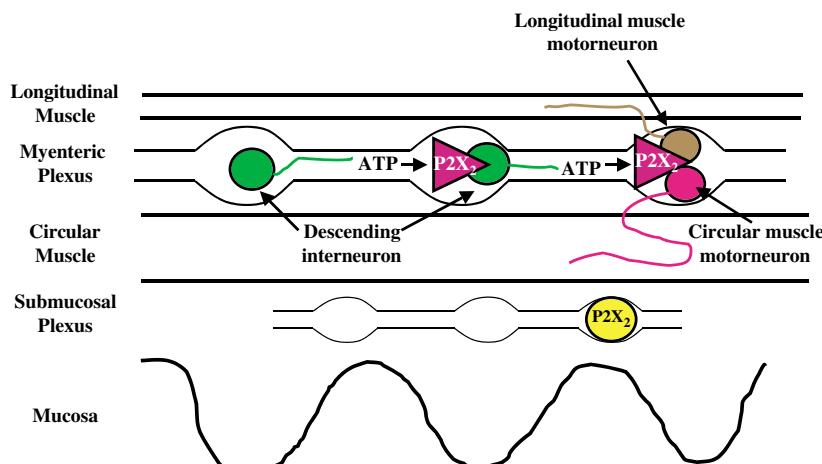
Neurons in the submucosal plexus control water and electrolyte secretion by GI epithelial cells (Cooke, 2000), and the volume of water and electrolytes absorbed from or secreted into the small intestinal or colonic lumen will impact on the volume of fecal content and defecation. Therefore, drugs that target receptors on submucosal neurons would have potential use in the treatment of IBS.

Immunoreactivity for P2X<sub>2</sub>, P2X<sub>3</sub> and P2X<sub>7</sub> subunits has been localized to subsets of submucosal neurons in the guinea pig small intestine and colon (Hu *et al.*, 2001; Castelucci *et al.*, 2002; Poole *et al.*, 2002). Exogenously applied ATP causes a rapidly developing depolarization or inward current in many submucosal neurons and these responses were blocked by suramin and PPADS (Barajas-Lopez *et al.*, 1998; 2002). As in the myenteric plexus, ATP and acetylcholine are fast excitatory synaptic transmitters. However, in the guinea pig submucosal plexus, only about 20% of these neurons exhibit a component of the fEPSP mediated at P2X receptors (Monro *et al.*, 2004) (Figure 1).

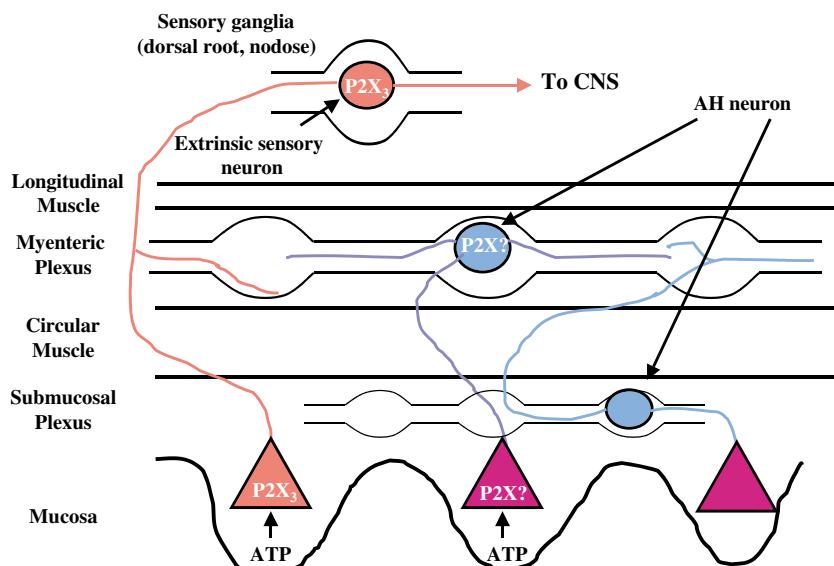
#### **Contribution of P2X to intestinal reflexes**

Studies of distension-evoked reflexes in an isolated segment of guinea pig intestine support a role for P2X receptors in mediating synaptic transmission in descending inhibitory motor pathways (Johnson *et al.*, 1999; Bian *et al.*, 2000). In these experiments, divided organ baths were used that isolated sites of drug application to either the site of distension, to a site that would block transmission between descending interneurons or to a site that would block synaptic input to the final inhibitory motor neurons. The nicotinic cholinergic receptor antagonist, hexamethonium, and the P2 receptor antagonists suramin and PPADS did not block transmission between interneurons in descending inhibitory reflex pathways (Johnson *et al.*, 1999; Bian *et al.*, 2000). However, PPADS blocked reflex-evoked inhibitory responses when applied to the site where inhibitory responses (relaxation or an inhibitory junction potential) were recorded. These data indicated that P2X-mediated synaptic excitation in descending inhibitory pathways occurs directly at the synapse between a descending interneuron and the inhibitory motor neurons (Johnson *et al.*, 1999; Bian *et al.*, 2000). P2X receptors also contribute to interneuronal transmission in descending excitatory pathways in the guinea pig small intestine (Spencer *et al.*, 2000; Monro *et al.*, 2002). Descending excitation is mediated by reflex activation of cholinergic motor neurons supplying the muscle layers. Descending excitatory neural inputs to the longitudinal and circular muscle caused by either wall distension or mucosal distortion are resistant to nicotinic cholinergic receptor

#### **Therapeutic potential of P2X receptors in IBS**


antagonists. However, PPADS blocks reflex activation of both circular and longitudinal muscle layers, indicating that ATP acting on P2X receptors is the principal excitatory neurotransmitter in descending excitatory pathways in the guinea pig intestine (Spencer *et al.*, 2000; Monro *et al.*, 2002).

#### **P2X on sensory nerves supplying the GI tract**


Abdominal pain is a prominent symptom in IBS patients (Drossman *et al.*, 2002). Therefore, one target for drug treatment of IBS would be sensory nerves conveying nociceptive information from the GI tract to the central nervous system. Nociceptive information from the GI tract is carried principally by spinal afferent neurons whose cell bodies are in dorsal root ganglia (Holzer, 2001; Blackshaw & Gebhart, 2002). Furthermore, dorsal root ganglion neurons express P2X<sub>2</sub> and P2X<sub>3</sub> receptor subunits (Lewis *et al.*, 1995; Kennedy *et al.*, 2003; North, 2003). The endings of spinal afferent nerve fibers supplying the small intestine also express functional P2X receptors, as local application of ATP or  $\alpha,\beta$ -methylene ATP increases action potential firing rate of these nerve fibers (Kirkup *et al.*, 1999). ATP and  $\alpha,\beta$ -methylene ATP also sensitize mechanosensitive nerve endings in vagal afferent nerve fibers supplying the esophagus (Page *et al.*, 2000). These data provide an anatomical and functional substrate for P2X receptors as targets for drugs that could modify pain signals arising in the gut wall (Figure 2). ATP released by epithelial cells in response to physiological stimuli (distention for example) or under pathophysiological conditions (noxious distention, inflammation) would activate P2X receptors on spinal afferents that would then convey feelings of distention, under physiological conditions, or pain in pathophysiological states (Holzer, 2001; Kirkup *et al.*, 2001). Indeed, recent studies have shown that spinal afferent nerve fibers supplying the colorectum in the rat express P2X<sub>3</sub> receptor subunits. Balloon distention of the rectum causes local release of ATP, presumably from the mucosal layer, and locally released ATP activates afferent nerve fibers projecting from the colorectum to the lumbar-sacral portion of the spinal cord. (Wynn *et al.*, 2003). These responses were prominent in high-threshold afferent fibers indicating that P2X receptors may participate in transmission of pain signals to the central nervous system from the colorectum in the rat (Wynn *et al.*, 2003).

#### **Future directions**

The information derived from animal studies and summarized in this review indicates that P2X receptors are rational targets for drugs that could be used to treat IBS. P2X<sub>2</sub> receptors are expressed by non-enteric autonomic neurons and by neurons in the CNS. Currently, the best evidence for a functional role of P2X<sub>2</sub> receptors in synaptic transmission in an identified neural pathway is in the myenteric plexus of the guinea pig intestine (Bian *et al.*, 2000; Khakh, 2001). Therefore, drugs acting at P2X<sub>2</sub> receptors might alter GI motility without disrupting synaptic mechanisms in other parts of the nervous system. This suggestion is supported by studies carried out in the small intestine of P2X<sub>2</sub> subunit knockout mice. These animals exhibited no behavioral or developmental abnormalities but peristalsis was impaired in the small intestine of these



**Figure 1** P2X receptors to descending interneurons and inhibitory motor neurons in the guinea pig small intestine. Analysis of the projections of neurons providing P2X-mediated synaptic input in the myenteric plexus has revealed that these projections are in descending pathways in the intestine. P2X receptors are localized to interneurons and motor neurons in these descending pathways. P2X<sub>2</sub> subunits contribute to the P2X receptors expressed by these neurons. P2X receptors are also found in submucosal neurons. These are also likely to contain of P2X<sub>2</sub> subunits.



**Figure 2** Localization of P2X receptors to primary afferent neurons intrinsic supplying the GI tract. The nerve cell body and nerve terminals of myenteric plexus AH-type neurons express P2X receptors, but the subunit composition of these receptors is unclear. It is not known if P2X receptors are found on the nerve terminals of submucosal plexus AH neurons. AH neurons can function as sensory neurons intrinsic to the wall of the intestine. P2X<sub>3</sub> receptors are localized to extrinsic primary afferents conveying nociceptive signals to the CNS.

mice (Ren *et al.*, 2003). Based on these data, P2X<sub>2</sub> receptors appear to be promising target drugs that could selectively alter GI motility without disrupting synaptic transmission in other parts of the nervous system. So, antagonists acting at P2X<sub>2</sub> receptors would be expected to delay intestinal propulsion and these drugs would be useful in treating diarrhea-predominant IBS. Alternatively, drugs that facilitate P2X<sub>2</sub>-mediated synaptic transmission might enhance intestinal propulsion and, therefore, they would be useful in treating constipation-predominant IBS. Future work in this area would be facilitated by the development of potent and selective ligands for P2X<sub>2</sub> homomeric receptors. To be useful, the P2X<sub>2</sub> selective ligands would need to retain their potency and selectivity *in vivo*.

P2X receptors are localized to intrinsic and extrinsic primary afferent neurons supplying the GI tract. Activation of P2X receptors on intrinsic and extrinsic primary afferent nerves would initiate propulsive motor reflexes in the GI tract. Activation of P2X receptors on extrinsic primary afferent nerve terminals might also contribute to transmission of nociceptive information to the CNS. Antagonists acting at primary afferent nerve terminal P2X receptors would be predicted to delay intestinal propulsion and to block ATP-mediated activation of extrinsic sensory nerves. Therefore, these drugs might be useful for the treatment of diarrhea-predominant IBS and associated visceral hypersensitivity and pain. P2X receptor antagonists have anti-nociceptive effects in human and animal models of acute and chronic pain (Bleehen

& Keele, 1977; Chizh & Illes, 2001; Kennedy *et al.*, 2003; North, 2003). However, it has not yet been established if the same drugs are effective against GI pain or visceral hypersensitivity. Data indicating a role for P2X receptors in animal models of visceral hypersensitivity or GI pain are needed to provide further support for the development of P2X receptor-selective drugs for the treatment of visceral hypersensitivity in IBS. In addition, a careful characterization of the distribution of P2X receptor subtypes in human tissues, particularly the GI tract, is needed. Immunoreactivity for P2X<sub>3</sub> subunits have been localized to enteric neurons and also in the nerve terminals of extrinsic primary afferent neurons in samples of human colon (Facer *et al.*, 2001; Yiangou *et al.*, 2001). However, identification of the functional classes of human enteric neurons expressing P2X<sub>3</sub> and other P2X subunits is needed in order to understand the potential consequences of receptor activation or antagonism on human GI function. More extensive information about P2X subunit distribution in non-GI tissues in the human would also provide insights into potential adverse effects of P2X receptor ligands.

Immunohistochemical studies have localized P2X receptors to nerve fibers throughout the GI tract. The function of enteric neuronal terminal P2X receptors has not been studied systematically. In sympathetic neurons, activation of nerve terminal P2X receptors causes norepinephrine and ATP release (Sperlagh & Vizi, 1991; Boehm, 1999). Studies in

## Therapeutic potential of P2X receptors in IBS

synaptosomes prepared from the guinea pig myenteric plexus have shown that ATP can increase the release of acetylcholine from these isolated nerve terminals (Reese & Coupar, 1982). Further study of P2X receptors on enteric nerve endings would reveal if these receptors are potential targets for drug treatment of IBS.

The potential link between acute episodes of gastroenteritis and subsequent development of IBS in some patients has heightened interest in interactions between the immune system and the nerve supply of the GI tract (Sharkey & Kroese, 2001; Sharkey & Mawe, 2002; Spiller, 2003). P2X receptors, particularly P2X<sub>7</sub> receptors, are expressed by macrophages, lymphocytes and also by mast cells (reviewed by DiVirgilio *et al.*, 2001; North, 2002). There have been no studies of the expression of P2X<sub>7</sub> receptors by immune cells or mast cells in the GI tract. It would be useful to characterize the distribution and function of P2X<sub>7</sub> receptors in immune cells in the gut. This information might provide the basis for a drug treatment strategy that would inhibit immune system-induced alterations in the function of enteric and afferent nerves supplying the GI tract.

Work in the author's laboratory was supported by Grant DK57039 from the National Institute of Diabetes, Digestive Diseases and Kidney.

## References

BARAJAS-LOPEZ, C., ESPINOSA-LUNA, R. & ZHU, Y. (1998). Functional interactions between nicotinic and P2X channels in short term cultures of guinea pig submucosal neurons. *J. Physiol.*, **513**, 671–683.

BARAJAS-LOPEZ, C., HUZING, J.D., COLLINS, S.M., GERZANICH, V., ESPINOSA-LUNA, R. & PERES, A.L. (1996). P2X-purinoceptors of myenteric neurons from the guinea-pig ileum and their unusual pharmacological properties. *Br. J. Pharmacol.*, **119**, 1541–1548.

BARAJAS-LOPEZ, C., MONTANO, L.M. & ESPINOSA-LUNA, R. (2002). Inhibitory interactions between 5-HT<sub>3</sub> and P2X channels in submucosal neurons. *Am. J. Physiol.*, **283**, G1238–G1248.

BERTRAND, P.P. & BORNSTEIN, J.C. (2002). ATP as a putative sensory mediator: activation of intrinsic sensory neurons of the myenteric plexus via P2X receptors. *J. Neurosci.*, **22**, 4767–4775.

BIAN, X., BERTRAND, P.P. & BORNSTEIN, J.C. (2000). Descending inhibitory reflexes involve P2X receptor-mediated transmission from interneurons to motor neurons in guinea-pig ileum. *J. Physiol.*, **528**, 551–560.

BIAN, X., REN, J., DEVRIES, M., SCHNEGELBERG, B., COCKAYNE, D.A., FORD, A.P.D.W. & GALLIGAN, J.J. (2003). Peristalsis is impaired in the small intestine of mice lacking the P2X<sub>3</sub> subunit. *J. Physiol.*, **551**, 309–322.

BLACKSHAW, L.A. & GEBHART, G.P. (2002). The pharmacology of gastrointestinal nociceptive pathways. *Curr. Opin. Pharmacol.*, **2**, 642–649.

BLEEHEN, T. & KEELE, C.A. (1977). Observations on the alogenic effects of adenosine compounds on the human blister base preparation. *Pain*, **3**, 367–377.

BOEHM, S. (1999). ATP stimulates sympathetic transmitter release via presynaptic P2X receptors. *J. Neurosci.*, **19**, 737–746.

BRADLEY JR, J.S., PARR, E.J. & SHARKEY, K.A. (1997). Effects of inflammation on cell proliferation in the myenteric plexus of the guinea-pig ileum. *Cell Tissue Res.*, **289**, 455–461.

BROOKES, S.J. (2001). Classes of enteric nerve cells in the guinea-pig small intestine. *Anat. Rec.*, **262**, 58–70.

CALLAHAN, M.J. (2002). Irritable bowel syndrome neuropharmacology. A review of approved and investigational compounds. *J. Clin. Gastroenterol.*, **35**, S58–S67.

CASTELUCCI, P., ROBBINS, H.L., POOLE, D.P. & FURNESS, J.B. (2002). The distribution of purine P2X(2) receptors in the guinea-pig enteric nervous system. *Histochem. Cell Biol.*, **117**, 415–422.

CHIZH, B.A. & ILLES, P. (2001). P2X receptors and nociception. *Pharmacol. Rev.*, **53**, 553–568.

COOKE, H.J. (2000). Neurotransmitters in neuronal reflexes regulating intestinal secretion. *Ann. N.Y. Acad. Sci.*, **915**, 77–80.

CORAZZIARI, E., BYTZER, P., DELVAUX, M., HOLTMANN, G., MALAGELADA, J.R., MORRIS, J., MULLER-LISSLER, S., SPILLER, R.C., TACK, J. & WHORWELL, P.J. (2003). Clinical trial guidelines for pharmacological treatment of irritable bowel syndrome. *Aliment. Pharmacol. Ther.*, **18**, 569–580.

CORNELISSEN, W., DE LAET, A., KROESE, A.B., VAN BOGAERT, P.P., SCHEUERMANN, D.W. & TIMMERMANS, J.P. (2001). Excitatory synaptic inputs on myenteric Dogiel type II neurones of the pig ileum. *J. Comp. Neurol.*, **432**, 137–154.

DIVIRGILIO, F., CHIOZZI, P., FERRARI, D., FALZONI, S., SANZ, J.M., MORELLI, A., TORBOLI, M., BOLOGNESI, G. & BARICORDI, O.R. (2001). Nucleotide receptors: an emerging family of regulatory molecules in blood cells. *Blood*, **97**, 587–600.

DROSSMAN, D.A., CAMILLERI, M., MAYER, E.A. & WHITEHEAD, W.E. (2002). A technical review on the irritable bowel syndrome. *Gastroenterology*, **123**, 2108–2131.

FACER, P., KNOWLES, C.H., TAM, P.K., FORD, A.P., DYER, N., BAECKER, P.A. & ANAND, P. (2001). Novel capsaicin (VR1) and purinergic (P2X3) receptors in Hirschsprung's intestine. *J. Pediatr. Surg.*, **36**, 1679–1684.

FRIELING, T., BECKER, K., RUPPRECHT, C., DOBREVA, G., HAUSSINGER, D. & SCHEMANN, M. (1997). Leukotriene-evoked cyclic chloride secretion is mediated by enteric neuronal modulation in guinea-pig colon. *Naunyn Schmiedebergs Arch. Pharmacol.*, **355**, 625–630.

FURNESS, J.B. & CLERC, N. (2000). Responses of afferent neurons to the contents of the digestive tract, and their relation to endocrine and immune responses. *Prog. Brain Res.*, **122**, 159–172.

FURNESS, J.B. & COSTA, M. (1987). *The Enteric Nervous System*. Edinburgh: Churchill Livingstone.

FURNESS, J.B., JONES, C., NURGALI, K. & CLERC, N. (2004). Intrinsic primary afferent neurons and nerve circuits within the intestine. *Prog. Neurobiol.*, (in press).

FURNESS, J.B., KUNZE, W.A., BERTRAND, P.P., CLERC, N. & BORNSTEIN, J.C. (1998). Intrinsic primary afferent neurons of the intestine. *Prog. Neurobiol.*, **54**, 1–18.

GALLIGAN, J.J., LEPARD, K.J., SCHNEIDER, D.A. & ZHOU, X. (2000). Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. *J. Auton. Nerv. Syst.*, **81**, 97–103.

GRAFE, P.G., WOOD, J.D. & MAYER, C.J. (1979). Fast excitatory postsynaptic potentials in AH (Type 2) neurons of guinea pig myenteric plexus. *Brain Res.*, **163**, 349–352.

HENS, J., SCHRODL, F., BREHMER, A., ADRIAENSEN, D., NEUHUBER, W., SCHEVERMANN, D.W., SCHEMAN, M. & TIMMERMANS, J.P. (2000). Mucosal projections of enteric neurons in the porcine intestine. *J. Comp. Neurol.*, **421**, 429–436.

HIRST, G.D., HOLMAN, M.E. & SPENCE, I. (1974). Two types of neurons in the myenteric plexus of duodenum in the guinea-pig. *J. Physiol.*, **236**, 303–326.

HIRST, G.D., JOHNSON, S.M. & VAN HELDEN, D.F. (1985). The slow calcium-dependent potassium current in a myenteric neurone of the guinea-pig ileum. *J. Physiol.*, **361**, 315–337.

HOLZER, P. (2001). Gastrointestinal afferents as targets of novel drugs for the treatment of functional bowel disorders and visceral pain. *Eur. J. Pharmacol.*, **429**, 177–193.

HU, H.Z., GAO, N., LIN, Z., GAO, C., LIU, S., REN, J., XIA, Y. & WOOD, J.D. (2001). P2X(7) receptors in the enteric nervous system of guinea-pig small intestine. *J. Comp. Neurol.*, **440**, 299–310.

JIANG, L.H., KIM, M., SPELTA, V., BO, X., SURPRENANT, A. & NORTH, R.A. (2003). Subunit arrangement in P2X receptors. *J. Neurosci.*, **23**, 8903–8910.

JOHNSON, P.J., SHUM, O.R., THORNTON, P.D. & BORNSTEIN, J.C. (1999). Evidence that inhibitory motor neurones of the guinea pig small intestine exhibit fast excitatory postsynaptic potentials mediated via P2X receptors. *Neurosci. Lett.*, **266**, 169–172.

KAMM, M.A. (2002). Review article: the complexity of drug development for irritable bowel syndrome. *Aliment. Pharmacol. Ther.*, **16**, 343–351.

KELLES, A., JANSSENS, J. & TACK, J. (2000). IL-1b and IL-6 excite neurons and suppress cholinergic neurotransmission in the myenteric plexus of the guinea pig. *Neurogastroenterol. Motil.*, **12**, 531–538.

KENNEDY, C., ASSIS, T.S., CURRIE, A.J. & ROWAN, E.G. (2003). Crossing the pain barrier: P2 receptors as targets for novel analgesics. *J. Physiol.*, **553**, 683–694.

KHAKH, B.S. (2001). Molecular physiology of P2X receptors and ATP signaling at synapses. *Nat. Rev. Neurosci.*, **2**, 165–174.

KIRCHGESSNER, A.L. & GERSHON, M.D. (1988). Projections of submucosal neurons to the myenteric plexus of the guinea pig intestine: *in vitro* tracing of microcircuits by retrograde and anterograde transport. *J. Comp. Neurol.*, **277**, 487–498.

KIRKUP, A.J., BOOTH, C.E., CHESSELL, I.P., HUMPHREY, P.P. & GRUNDY, D. (1999). Excitatory effect of P2X receptor activation on mesenteric afferent nerves in the anaesthetised rat. *J. Physiol.*, **520**, 551–563.

KIRKUP, A.J., BRUNSDEN, A.M. & GRUNDY, D. (2001). Receptors and transmission in the brain-gut axis: potential for novel therapies. I. Receptors on visceral afferents. *Am. J. Physiol.*, **280**, G787–G794.

KUNZE, W.A. & FURNESS, J.B. (1999). The enteric nervous system and regulation of intestinal motility. *Annu. Rev. Physiol.*, **61**, 117–142.

KUNZE, W.A., FURNESS, J.B. & BORNSTEIN, J.C. (1993). Simultaneous intracellular recordings from enteric neurons reveal that myenteric AH neurons transmit via slow excitatory postsynaptic potentials. *Neuroscience*, **55**, 685–694.

LEMBO, A., WEBER, H.C. & FARRAYE, F.A. (2003). Alosetron in irritable bowel syndrome: strategies for its use in a common gastrointestinal disorder. *Drugs*, **63**, 1895–1905.

LEPARD, K.J. & GALLIGAN, J.J. (1999). Analysis of fast synaptic pathways in myenteric plexus of guinea-pig ileum. *Am. J. Physiol.*, **276**, G529–G538.

LEPARD, K.J., MESSORI, E. & GALLIGAN, J.J. (1997). Purinergic fast excitatory postsynaptic potentials in myenteric neurons of guinea pig: distribution and pharmacology. *Gastroenterology*, **115**, 1522–1534.

LEWIS, C., NEIDHART, S., HOLY, C., NORTH, R.A., BUELL, G. & SURPRENANT, A. (1995). Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. *Nature*, **377**, 432–435.

LINDEN, D.R., SHARKEY, K.A. & MAWE, G.M. (2003). Enhanced excitability of myenteric AH neurons in the inflamed guinea-pig distal colon. *J. Physiol.*, **547**, 589–601.

LIU, M.T., ROTHSTEIN, J.D., GERSHON, M.D. & KIRCHGESSNER, A.L. (1997). Glutamatergic enteric neurons. *J. Neurosci.*, **17**, 4764–4784.

LIU, S., HU, H.Z., GAO, N., GAO, C., WANG, G., WANG, X., PECK, O.C., KIM, G., GAO, X., XIA, Y. & WOOD, J.D. (2003). Neuroimmune interactions in guinea pig stomach and small intestine. *Am. J. Physiol.*, **284**, G154–G164.

LUNDGREN, O. (2000). Sympathetic input into the enteric nervous system. *Gut*, **47** (Suppl 4), 33–35.

MAYER, E.A. (2000). The neurobiology of stress and gastrointestinal disease. *Gut*, **47**, 861–869.

MAYER, E.A. & BRADESI, S. (2003). Alosetron and irritable bowel syndrome. *Expert Opin. Pharmacother.*, **4**, 2089–2098.

MAYER, E.A. & COLLINS, S.M. (2002). Evolving pathophysiologic models of functional gastrointestinal disorders. *Gastroenterology*, **122**, 2032–2048.

MILLER, D.P., ALFREDSON, T., COOK, S.F., SANDS, B.E. & WALKER, A.M. (2003). Incidence of colonic ischemia hospitalised complications of constipation, and bowel surgery in relation to use of alosetron hydrochloride. *Am. J. Gastro.*, **98**, 1117–1122.

MONRO, R.L., BERTRAND, P.P. & BORNSTEIN, J.C. (2002). ATP and 5-HT are the principal neurotransmitters in the descending excitatory reflex pathway of the guinea-pig ileum. *Neurogastroenterol. Motil.*, **14**, 255–264.

MONRO, R.L., BERTRAND, P.P. & BORNSTEIN, J.C. (2004). ATP participates in three excitatory post-synaptic potentials in the submucous plexus of the guinea pig ileum. *J. Physiol.*, (e-pub) 10.1113/jphysiol.2004.060848.

MOORE, B.A., STEWART, T.M., HILL, C. & VANNER, S.J. (2002). TNBS ileitis evokes hyperexcitability and changes in ionic membrane properties of nociceptive DRG neurons. *Am. J. Physiol.*, **282**, G1045–G1051.

MORITA, K., NORTH, R.A. & TOKIMASA, T. (1982). The calcium-activated potassium conductance in guinea-pig myenteric neurones. *J. Physiol.*, **329**, 341–354.

NEUNLIST, M., BAROUK, J., MICHEL, K., JUST, I., ORESHKOVA, T., SCHEMANN, M. & GALMICHE, J.P. (2003). Toxin B of *Clostridium difficile* activates human VIP submucosal neurons, in part via an IL-1beta-dependent pathway. *Am. J. Physiol.*, **285**, G1049–G1055.

NISHI, S. & NORTH, R.A. (1973). Intracellular recording from the myenteric plexus of the guinea-pig ileum. *J. Physiol.*, **231**, 471–491.

NORENBERG, W. & ILLES, P. (2000). Neuronal P2X receptors: localization and functional properties. *Naunyn Schmiedebergs Arch. Pharmacol.*, **362**, 324–339.

NORTH, R.A. (2002). Molecular physiology of P2X receptors. *Physiol. Rev.*, **82**, 1013–1067.

NORTH, R.A. (2003). P2X<sub>3</sub> receptors and peripheral pain mechanisms. *J. Physiol.*, **554**, 301–308.

NORTH, R.A. & SURPRENANT, A. (2000). Pharmacology of cloned P2X receptors. *Annu. Rev. Pharmacol. Toxicol.*, **40**, 563–580.

NOVICK, J., MINER, P., KRAUSE, R., GLEBAS, K., BLIESATH, H., LIGOZIO, G., RUEGG, P. & LEFKOWITZ, M. (2002). A randomized, double-blind, placebo-controlled trial of tegaserod in female patients suffering from irritable bowel syndrome with constipation. *Aliment. Pharmacol. Ther.*, **16**, 1877–1888.

NURGALI, K., FURNESS, J.B. & STEBBING, M.J. (2003). Analysis of purinergic and cholinergic fast synaptic transmission to identified myenteric neurons. *Neuroscience*, **116**, 335–347.

PAGE, A.J., O'DONNELL, T.A. & BLACKSHAW, L. (2000). P2X purinoreceptor-induced sensitization of ferret vagal mechanoreceptors in oesophageal inflammation. *J. Physiol.*, **523**, 403–411.

POLI, E., LAZZARETTI, M., GRANDI, D., POZZOLI, C. & CORUZZI, G. (2001). Morphological and functional alterations of the myenteric plexus in rats with TNBS-induced colitis. *Neurochem. Res.*, **26**, 1085–1093.

POOLE, D.P., CASTELUCCI, P., ROBBINS, H.L., CHIOCCHETTI, R. & FURNESS, J.B. (2002). The distribution of P2X<sub>3</sub> purine receptor subunits in the guinea pig enteric nervous system. *Auton. Neurosci.*, **101**, 39–47.

POWLEY, T.L. (2000). Vagal input to the enteric nervous system. *Gut*, **47** (Suppl 4), 30–32.

REED, D.E., BARAJAS-LOPEZ, C., COTTRELL, G., VELAZQUEZ-ROCHA, S., DERY, O., GRADY, E.F., BUNNETT, N.W. & VANNER, S.J. (2003). Mast cell tryptase and proteinase-activated receptor 2 induce hyperexcitability of guinea-pig submucosal neurons. *J. Physiol.*, **547**, 531–542.

REESE, J.H. & COUPAR, J.R. (1982). Modulation of the release of acetylcholine from ileal synaptosomes by adenosine and adenosine triphosphate. *J. Pharmacol. Exp. Ther.*, **223**, 612–616.

REN, J., BIAN, X., DEVRIES, M., SCHNEGELBERG, B., COCKAYNE, D.A., FORD, A.P.D.W. & GALLIGAN, J.J. (2003). P2X<sub>2</sub> subunits contribute to fast synaptic excitation in myenteric neurons of the mouse small intestine. *J. Physiol.*, **552**, 809–821.

ROBERTSON, S.J., ENNION, S.J., EVANS, R.J. & EDWARDS, F.A. (2001). Synaptic P2X receptors. *Curr. Opin. Neurobiol.*, **11**, 378–386.

RUHL, A., FRANZKE, S. & STREMMEL, W. (2001). IL-1beta and IL-10 have dual effects on enteric glial cell proliferation. *Neurogastroenterol. Motil.*, **13**, 89–94.

SHARKEY, K.A. & KROESE, A.B. (2001). Consequences of intestinal inflammation on the enteric nervous system: neuronal activation induced by inflammatory mediators. *Anat. Rec.*, **262**, 79–90.

SHARKEY, K.A. & MAWE, G.M. (2002). Neuroimmune and epithelial interactions in intestinal inflammation. *Curr. Opin. Pharmacol.*, **2**, 669–677.

SONG, Z.M., COSTA, M. & BROOKES, S.J. (1994). All calbindin-immunoreactive neurons in the myenteric plexus of the guinea pig intestine project to the mucosa. *Neurosci. Lett.*, **180**, 219–222.

SONG, Z.M., COSTA, M. & BROOKES, S.J. (1998). Projections of submucous neurons to the myenteric plexus in the guinea pig small intestine. *J. Comp. Neurol.*, **399**, 255–268.

SPENCER, N.J., WALSH, M. & SMITH, T.K. (2000). Purinergic and cholinergic neuro-neuronal transmission underlying reflexes activated by mucosal stimulation in the isolated guinea-pig ileum. *J. Physiol.*, **522**, 321–331.

SPERLAGH, B. & VIZI, E.S. (1991). Effects of presynaptic P2 Receptor stimulation on neurotransmission. *J. Neurochem.*, **59**, 1466–1470.

SPILLER, R.C. (2003). Postinfectious irritable bowel syndrome. *Gastroenterology*, **124**, 1662–1671.

STEWART, T., BEYAK, M.J. & VANNER, S. (2003). Ileitis modulates potassium and sodium currents in guinea pig dorsal root ganglia sensory neurons. *J. Physiol.*, **552**, 797–807.

TALLEY, N.J. (2003). Evaluation of drug treatment in irritable bowel syndrome. *Br. J. Clin. Pharmacol.*, **56**, 362–369.

TAMURA, K. & WOOD, J.D. (1989). Electrical and synaptic properties of myenteric plexus neurones in the terminal large intestine of the guinea-pig. *J. Physiol.*, **415**, 275–298.

TORRES, G.E., EGAN, T.M. & VOIGT, M.M. (1999). Hetero-oligomeric assembly of P2X subunits. *J. Biol. Chem.*, **274**, 6653–6659.

VANNASSAUW, L., BROUNS, I., ADRIAENSEN, D., BURNSTOCK, G. & TIMMERMANS, J.P. (2002). Neurochemical identification of enteric neurons expressing P2X(3) receptors in the guinea-pig ileum. *Histochem. Cell Biol.*, **118**, 193–203.

VOGALIS, F., HARVEY, J.R. & FURNESS, J.B. (2002). TEA- and apamin-resistant KCa channels in guinea-pig myenteric neurons: slow AHP channels. *J. Physiol.*, **538**, 421–433.

WAGSTAFF, A.J., FRAMPTON, J.E. & CROOM, K.F. (2003). Tegaserod: a review of its use in the management of irritable bowel syndrome with constipation in women. *Drugs*, **63**, 1101–1120.

WOOD, J.D. (1992). Histamine signals in enteric neuroimmune interactions. *Ann. N.Y. Acad. Sci.*, **664**, 275–283.

WYNN, G., RONG, W., XIANG, Z. & BURNSTOCK, G. (2003). Purinergic mechanisms contribute to mechanosensory transduction in the rat colonrectum. *Gastroenterology*, **125**, 1398–1409.

XIA, Y., HU, H.Z., LIU, S., REN, J., ZAFIROV, D.H. & WOOD, J.D. (1999). IL-1beta and IL-6 excite neurons and suppress nicotinic and noradrenergic neurotransmission in guinea pig enteric nervous system. *J. Clin. Invest.*, **103**, 1309–1316.

YIANGOU, Y., FACER, P., BAECKER, P.A., FORD, A.P., KNOWLES, C.H., CHAN, C.L., WILLIAMS, N.S. & ANAND, P. (2001). ATP gated ion channel P2X<sub>3</sub> is increased in human inflammatory bowel disease. *Neurogastroenterol. Motil.*, **13**, 365–369.

ZHOU, X. & GALLIGAN, J.J. (1996). Purinoceptors in cultured myenteric neurons of guinea-pig small intestine. *J. Physiol.*, **496**, 719–729.

(Received February 3, 2004  
 Revised February 24, 2004  
 Accepted February 25, 2004)